Detail Cantuman
Advanced SearchProyek Akhir
Penerapan Deep Learning Pada Jenis Penyakit Tanaman Kelapa Sawit Menggunakan Algoritma Convolutiona Neural Network
Masalah Organisme Pengganggu Tumbuhan (OPT) terutama berkaitan dengan penyakit selalu menjadi isu dalam pengelolaan perkebunan kelapa sawit. Kelapa sawit memiliki penyakit yang disebabkan oleh hama dan lainnya yang dapat mempengaruhi pertumbuhan serta proses berbuahnya.Untuk itu, penelitian ini bertujuan untuk mengidentifikasi sehat dan tidaknya tanaman kelapa sawit melalui warna daunnya, sehingga akan memudahkan kinerja petani. Deep Learning (DL) merupakan bidang ilmu dari machine learning dengan melakukan pembelajaran lebih dalam untuk banyak lapisan. Convolutional Neural Network (CNN) adalah salah satu algoritma DL yang dirancang untuk mengolah data dalam bentuk dua dimensi misalnya gambar. Oleh karena itu, pada penelitian ini akan diterapkan metode CNN untuk mengklasifikasikan sehat atau tdiaknya tanaman kelapa sawit berdasarkan warna daunnya. Data yang digunakan berjumlah 3000 data dengan skenario pengujian untuk data training dan data testingnya adalah 90%:10%, 80%:20%, 70%:30% dan 65%:35%. Berdasarkan dari 4 skenario pengujian tersebut akurasi terbaik didapatkan adalah 99.90% untuk skenario 65% data training dan 35% data testing. Sedangkan tingkat akurasi yang paling rendah adalah 99,50% untuk skenario 90% data training dan 10% data testing.
Kata kunci: Kelapa Sawit, Deep Learning,Convolutional Neural Network
Ketersediaan
PA1820301019 | Perpustakaan PCR (R) | Tersedia namun tidak untuk dipinjamkan - No Loan |
Informasi Detil
Judul Seri |
-
|
---|---|
No. Panggil |
PA TET
|
Penerbit | Pustaka Politeknik Caltex Riau : Pekanbaru., 2022 |
Deskripsi Fisik |
xii, 149 hlm.; 20.5 x 14.5 cm
|
Bahasa |
Indonesia
|
ISBN/ISSN |
-
|
Klasifikasi |
PA TET
|
Tipe Isi |
text
|
Tipe Media |
-
|
---|---|
Tipe Pembawa |
-
|
Edisi |
1
|
Subyek | |
Info Detil Spesifik |
-
|
Pernyataan Tanggungjawab |
-
|
Versi lain/terkait
Tidak tersedia versi lain